Grundlagen der Statistik enthält Materialien verschiedener Vorlesungen und Kurse von H. Lohninger zur Statistik, Datenanalyse und Chemometrie .....mehr dazu. |
Home Grundlagen Lineare und nicht-lineare Modelle | |
Siehe auch: Regression - Einführung, Multiple lineare Regression - Einführung, Kurvilineare Regression | |
Search the VIAS Library | Index | |
Lineare und nicht lineare ModelleAuthor: Hans Lohninger
Viele Leute haben Probleme zu bestimmen, ob ein Modell linear oder nicht linear ist. Bevor das Thema von linearen gegenüber nicht linearen Systemen behandelt wird, ein paar Beispiele, die einige Arten von Entscheidungslinien zwischen zwei Klassen darstellen:
Ahnen Sie schon den Unterschied zwischen linearen und nicht linearen Modellen? Hier die Antwort: Lineare Modelle sind in den geschätzten Parametern linear, aber nicht unbedingt in den unabhängigen Variablen. Das erklärt, warum die mittlere Abbildung eine lineare Entscheidungslinie zwischen den zwei Klassen zeigt, obwohl die Linie nicht linear im Sinne von "gerade" ist. Ein weiteres Beispiel eines linearen Modells zeigt die Abbildung unten. Sie stellt eine parabolische Regressionsgerade dar, die natürlich eine Krümmung aufweist, aber dennoch ein lineares Modell ist: Es ist nicht die unabhängige Variable x, die für die Linearität ausschlaggebend ist, sondern es sind die Parameter des Modells (in unserem parabolischen Beispiel die Koeffizienten a, b und c). Aus dieser einfachen Einsicht folgt, dass die multiple lineare Regression zur Parameterabschätzung von "gekrümmten" Modellen verwendet werden kann.
|
|
Home Grundlagen Lineare und nicht-lineare Modelle |